What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum disulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black, solid. The layers of the crystal structure are made of alternately arranged molybdenum-sulfur atoms. Molybdenum disulfide This material is good in terms of chemical and thermo-stability. It can be easily reacted to acids or bases. It is widely used in lubricants as well as additives and composites. As a great lubricant molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. It is used widely in the manufacturing of machinery, petrochemicals and automobiles. In extreme conditions such as high temperature, high loads and fast speeds, molybdenum diulfide plays a lubricating and anti-wear role. This extends the service life for equipment. Additionally, molybdenum diulfide may be added to fuels in order to increase the efficiency of combustion and reduce pollutants. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in many fields. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants - Molybdenum Disulfide, a lubricant that is excellent for its high load carrying capacity, low friction coefficient, and good resistance to friction. It has a high lubrication capacity in extreme conditions such as high temperatures, high loads and high speeds. This makes it a popular lubricant in industries like automobile manufacturing, machinery manufacturing and the petrochemical sector. Molybdenum Disulfide Lubricant is also used to produce lubricating grease, lubricating oil and lubricating film.

Additive - Molybdenum Disulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce emissions. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum disulfide, when combined with rubber, resins and other materials, can produce high-performance materials such as composite fibres or reinforced plastics. These composites offer excellent mechanical properties, corrosion resistance, and are widely used for automotive, electronics and aerospace.

Electronic Industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic parts with high semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, including double decompositions, flotation, and electroplating. Synthesis is the most commonly used method for producing molybdenum.

The synthesis is a way to make nano MoS2 using a molybdenum, tungsten source. This method can produce sulfides of high purity with fewer impurities. This method can prepare sulfides to meet various functional requirements. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

It is essential to prepare both a tungsten source or a molybdenum one during the raw material preparation. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfur dioxide. The purity, chemical properties and reactions conditions of the raw materials are important factors to consider when selecting tungsten and molybdenum or sulfur sources.

In the chemical reactions stage, tungsten is Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. Specific conditions for the reaction include temperature, reaction time, and reaction atmosphere. The temperature and reaction time of the reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

Molybdenum isothiocyanate must be separated from the reaction products at the separation and purification phase using the correct separation and purification method. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The compound decomposition technique produces molybdenum by reacting ammonium motate or ammonium tantate with ammoniumsulfide. The method is able to produce molybdenum sulfide even at lower temperatures. It can also prepare different molybdenum sulfide products, such as those with different particle sizes and morphologies.

Flotation is the process of extracting molybdenum diulfide by using organic agents and grinding tungsten, molybdenum or other sources with minerals like sphalerite or pyrite. This method is able to produce molybdenum products with high purity, but requires more organic chemicals and a more complex production process.

Electroplating is the process of electroplating molybdenum on a metal surface. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

Different production methods offer different advantages and drawbacks. You should choose the best method for your needs. It is also important to consider environmental protection and safety during the production process.

Prospect Market for Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physical characteristics. It's widely used in industries such as aerospace, industry electronics and machinery. Demand for molybdenum diulfide has increased due to the continued development of global economies and the rapid development in high-tech areas. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performance lubricant used in petrochemical, machinery manufacturing and automobile manufacturing is widely used. As industrialization continues and mechanical equipment becomes more precise and automated, the demand for lubricants will increase. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollutants, reduce air pollution, and increase energy efficiency. As environmental awareness continues to grow and environmental policies are strengthened, the use of molybdenum dioxide as an additive that is environmentally friendly will continue to be promoted.

Molybdenum diulfide, when combined with other materials such as resins, fibres composites, and rubbers to produce composite materials of high performance, can also be used. These composites have excellent mechanical and corrosion-resistant properties and are used in many fields, including automotive, aerospace, electronic and others. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see increased demand.

The molybdenum-disulfide compound can be used for new applications such as energy storage and solar cells. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

A continual improvement in the production process will also lead to a gradual decline in the price, which will further increase the demand for molybdenum. In parallel, as environmental awareness increases and technological progress continues, new production technologies and processes will be introduced to the production process of molybdenum. This will further promote the growth of the molybdenum market.

According to the report from the market research company the global molybdenum market will continue rapid growth for the next several years with an annual rate of growth of over 10%. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been supplying chemical materials for over 12 years.

Chemicals and nanomaterials of high quality, including silicon powder, graphite or nitride, zinc, boron or sulfide.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. The cement proportion problem: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement ratio. This will cause the concrete to harden too quickly, and lead to cracking.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the evaporation rates of the surface concrete are accelerated. This results in cracks on the surface. Concrete constructions are most likely to crack in summer or winter due to the temperature differences.

Solution: Add a crack-preventing agent. A variety of inorganic composite materials can prevent the foam concrete from cracking by more than 80%. Add 2-3 kilograms of anti-cracking material per cubic meter.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed mainly of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is a carbon compound with excellent properties, mainly composed of boron and carbon elements, with the chemical formula B4C. The article provides an introduction to the physical properties and chemical characteristics, preparation methods and performance characterization of boron carbide, as well as its application fields.

Physical Properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal resistance is 97W/m*K. This is lower than that of metals, silicon and ceramics but higher than glass and other materials.

Chemical Properties

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high-temperature, corrosive environments.

Preparation method

Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, the arc melting technique, and the chemical vapour deposit method.

Methode de réduction du carbothermal

Carbon thermal reduction (CTR) is widely used to prepare boron carbide . The reaction equation is B2O3+3C - B4C+CO. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in an arc with boric acid to create boron carbide. The reaction formula is B2O3 + 3C - B4C. The reaction temperature ranges between 1800 and 2000°C. This method yields boron-carbide with a high degree of purity and fine particles, but is costly and complicated.

Chemical vapour deposition method

Chemical vapour deposition uses high temperature reactions of gaseous carbon black and borane to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. The reaction temperature ranges between 1000-1200°C. This method yields boron-carbide with high purity, superfine particles and a complex, expensive process.

Performance Characterization

The performance characterisation of boron carbide The term mainly refers to physical, chemical, or mechanical properties.

Physical property

Density, conductivity, thermal resistance, etc. are the main physical properties of Boron carbide. Among these, the density is 2.52g/cm3, conductivity is 10-6S/m, and thermal conductivity 97W/m* K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high-temperature, corrosive environments.

Mechanical property

Boron carbide's high melting point, hardness and heat transfer make it a popular material in the aerospace, military and industrial fields. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience in the field, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email if you're looking for Boron Carbide to: sales1@rboschco.com

Application of Nitinol Powder

The World Platinum Investment Association (WPIC) said recently that carmakers are accelerating reductions in palladium use and increased use of platinum due to concerns about Russian palladium supplies. However, it still expects a significant surplus in the platinum market this year.

Palladium is used by carmakers in tailpipe emissions systems to reduce carbon emissions.  While carmakers prefer palladium for catalytic converters, they are turning to platinum, which is cheaper than palladium, to save costs.

Russia accounts for about 25-30% of the world's palladium supply and 8-10% of its platinum supply.

There is no sign that western sanctions against Russia have restricted palladium exports since the conflict escalated in February, but as the conflict continues, more companies could boycott The Russian metal and governments could impose restrictions.

Platinum is currently trading at about $950 an ounce, about half the price of palladium.  Automakers use about 2.5 million to 3 million ounces of platinum and about 8.5 million ounces of palladium each year.

For the year as a whole, platinum supply will be 5 percent lower than in 2021 and demand 2 percent higher, with the automotive sector seeing a 16 percent increase due to increased light vehicle Nitinol Powder,Overview of Nitinol Powder,Application of Nitinol Powder,Nitinol powder price,Nitinol Powder Supplier are still very uncertain.

Overview of Nitinol Powder

Nitinol is a metal alloy of nickel and titanium in which the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percent of nickel, such as nickel. Nitinol 55 and Nitinol 60. It exhibits shape memory effect and superelasticity at different temperatures. Miron Nitinol powder, Ni-Ti alloy powder particle size: 15-53 microns Ni:Ti:5:5 or according to your requirements Purity: 99.9%. Sphere Percentage: 99.9% (Min) Production Method: Laser Evaporation.

Nitinol is a shape memory alloy, a special alloy that can automatically restore its plastic deformation to its original shape at a certain temperature. Its expansion rate is more than 20%, its fatigue life is 7 times that of 1*10, its damping characteristics are 10 times that of ordinary springs, and its corrosion resistance is better than the best medical stainless steel at present, so it can meet various requirements in engineering It is an excellent functional material that can meet the needs of medical applications.

In addition to its unique shape memory function, memory alloys also have excellent properties such as wear resistance, corrosion resistance, high damping and superelasticity.

Nitinol has two closely related and unique properties: the shape memory effect and superelasticity (also known as pseudoelasticity). Shape memory is the ability of Nitinol to deform at a certain temperature, retain its deformed shape after the external force is removed, and then return to its original undeformed shape when heated above its "transition temperature". Hyperelasticity is the ability of a metal to withstand large deformations and immediately return to its undeformed shape after removal of an external load. The amount of deformation of Nitinol is 10 to 30 times that of ordinary metals, and it can restore its original shape. Whether Nitinol exhibits shape memory effect or superelasticity depends on whether it is above a specific transformation temperature of the alloy. Below the transition temperature, it exhibits a shape memory effect.

Application of Nitinol Powder

Nitinol powder can meet the needs of various engineering and medical applications, and is an excellent functional material. In addition to its unique shape memory function, memory alloys also have excellent functions such as wear resistance, corrosion resistance, high damping and superelasticity.

1. Not easy to deform. Nickel-titanium alloy material undergoes inverse phase transformation, continuously heating and cooling, and the material will automatically return to its original state. The shape memory effect is actually a thermally induced phase transformation process of Nitinol.

2. Good elasticity. It refers to the phenomenon that the strain under the action of external force is much larger than the elastic limit strain, and the strain energy recovers automatically during the unloading process. That is, in the parent phase state, stress-induced martensitic transformation occurs due to the action of external stress. The alloy exhibits mechanical behavior different from ordinary materials, and its elastic limit far exceeds that of ordinary materials.

3. Applicable to the construction industry. Orthodontic force of superelastic Nitinol as a function of temperature. when the deformation is constant. Orthodontic force increases with increasing temperature. On the one hand, when the overall temperature of the building is too high, causing the overall building to expand and contract, it can still maintain good elasticity. The shape changes with temperature and does not break or deform, nor does it return to its original shape.

4. It has good shock absorption ability. When buildings vibrate due to geological factors, etc., Nitinol does not shake as much as steel because the initial amplitude of the superelastic Nitinol wire is only half that of steel. Its shock absorbing properties save buildings. It is very important and its uses are much wider than rebar.

Nitinol powder price

The price of Nitinol powder will vary with the production cost, transportation cost, international situation, exchange rate and supply and demand of Nitinol powder in the Nitinol powder market. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Nitinol powder, please feel free to send an inquiry to get the latest Nitinol powder price.

Nitinol Powder Supplier

As a global supplier of Nitinol powders, Tanki New Materials Co.,Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (including water-based stearic acid emulsion, water-based calcium stearate, zinc stearate, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Nitinol Powder Properties
Other Namesnickel titanium, shape memory nitinol, NiTi, Ni-Ti,
nickel-titanium shape-memory alloy (SMA)
CAS No.52013-44-2
Compound FormulaNiTi
Molecular WeightN/A
AppearanceBlack Powder
Melting Point1300 °C
Boiling PointN/A
Density6.45 g/cm3
Solubility in H2ON/A
Poisson's Ratio0.33
Specific Heat0.20 cal/g·°C
Tensile Strength895 MPa (Ultimate, fully annealed)
Thermal Conductivity0.18 W/cm (austenite), 0.086 W/cm (martensite)
Thermal Expansion11.0 x 10-6/°C (austenite), 6.6 x 10-6/°C (austenite)
Nitinol Powder Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A



Trafigura, one of the world's largest metals traders, is to take a stake in a new company to supply car and battery makers in Europe with lithium from a refinery in the UK, the Financial Times reported. As part of the investment, Trafigura will seek raw material for Green Lithium, which plans to build a plant in the north of England capable of producing 50,000 tonnes a year and sell the finished Nitinol Powder,Overview of Nitinol Powder,Application of Nitinol Powder,Nitinol powder price,Nitinol Powder Supplier, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Description of zinc stearate

The European Commission has submitted to member states a new draft of sanctions against Russia, including an oil embargo. Some member states that rely heavily on Russian energy sought exemptions.  

Western media reported that the European Commission draft of the sixth round of sanctions against Russia includes within six to eight months gradually banning oil imports from Russia, but allowing Hungary and Slovakia to extend the transition period for several months; The Russian Savings bank and other large financial institutions on the sanctions list.  

The European Union has imported 44 billion euros of fossil fuels from Russia since Russia launched its special military operation against Ukraine in late February, according to Finland's Energy and Clean Air Research Center.  

The Institute for European and Global Economics in Brussels estimates that the European Union currently consumes about $450 million worth of Russian oil a day.  

Among EU members, landlocked Hungary and Slovakia, which import most of their oil from Russia, cannot quickly find alternative supplies.  Slovakia says the transition will take years.  Some officials believe Bulgaria and the Czech Republic may also seek to opt out of oil sanctions against Russia.

Affected by the ever-changing international situation, the supply and prices of international bulk zinc stearate, zinc stearate overview, zinc stearate application, zinc stearate suppliers, zinc stearate price are still very uncertain.

Overview of Zinc Stearate

Zinc stearate is an organic substance with the chemical formula C36H70O4Zn, which is a white powder and insoluble in water. Mainly used as lubricant and mold release agent for styrene resin, phenolic resin and amine resin. At the same time, it also has the functions of vulcanization active agent and softener in rubber.

Zinc stearate production method

There are two production methods for zinc stearate: water method and melt method. Generally speaking, zinc stearate produced by water method is acidic, and molten method is alkaline.

The water method is also called the wet method. Under the condition of water as the medium, a catalyst is added, a certain temperature and pressure are controlled, and then a metal hydroxide is added, and the metal ions are replaced on the catalyst through the catalyst, and then replaced by the stearin through the catalyst itself. acid, so as to achieve the purpose of generating metal salts. The catalyst undergoes subsequent treatment and is recycled. The stearate is centrifuged, dried and ground to obtain a product with a mesh number of 200-600 that meets the industry standard. In water production, stearic acid is usually slightly excessive, so the finished product is acidic after the reaction.

The melting method, also known as the dry method, refers to the direct addition of metal oxides (zinc oxide) to the molten stearic acid. The temperature, pressure and stirring speed can be obtained through the reaction to obtain stearate. Due to the presence of catalyst, the product produced by the dry method can generally be completely reacted, and the metal oxide is slightly excessive, so the product is alkaline when detected.

{xunruicms_img_title}

Application of Zinc Stearate Emulsion

Zinc stearate emulsion can be used as heat stabilizer; lubricant; grease; promoter; thickener. For example, it is generally used as a heat stabilizer for PVC resins. For general industrial transparent products; can be used with calcium soaps. Can be used for non-toxic products.

Zinc stearate is commonly used as a mold release agent, heat stabilizer and lubricant in the plastics, polyolefins, polystyrene and rubber industries. Zinc stearate is also used as a polishing additive in wood coatings (lacquers). In cosmetics, zinc stearate is a lubricant and thickener that improves texture. Zinc stearate emulsion is widely used, including rubber, plastic, paint, ink, paint, thermal paper, cosmetics and other industries.

1. Rubber industry application: mold release agent, mold release agent, active agent, etc.

2. Application in plastic industry: internal mold release agent

3. Application in coating industry: color retention agent, filler, etc.

4 Application in plastic industry and coating industry: grinding aid

5. Application in cosmetic industry: lubricant

Zinc stearate price

The price of zinc stearate will change randomly with the production cost, transportation cost, international situation, exchange rate and supply and demand of zinc stearate emulsion. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Zinc Stearate Emulsion, please feel free to send an inquiry for the latest price of Zinc Stearate Emulsion.

Stearic Acid Liquid Supplier

As a global supplier of aqueous zinc stearate emulsions, Tanki New Materials has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Zinc Stearate Emulsion Properties

Other NamesN/A
CAS No.557-05-1
Compound FormulaC36H70O4Zn
Molecular WeightN/A
AppearanceWhite Emulsion
Melting Point125±5℃
Boiling PointN/A
Density0.9-1.2 g/cm3
Solubility in H2ON/A
Exact MassN/A

Zinc Stearate Emulsion Health & Safety Information

Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport Information

N/A



Where is the best place for humans to live in outer space? So far, the moon is more habitable in outer space, and it is likely to be turned into a planet. However, whether humans can live on the moon for a long time, these questions have always been lingering in everyone's minds, always There is no way to get an answer. According to the report, a team from the University of Aeronautics and Astronautics in Beijing, after nearly 370 days of closed life, finally simulated the life experiment on the moon, and finally knew what the final truth was. Live here for a long time.

All aspects of human beings are constantly improving, and the demand for zinc stearate, zinc stearate overview, zinc stearate application, zinc stearate suppliers, zinc stearate price is also increasing.If you are engaged in the zinc stearate, zinc stearate overview, zinc stearate application, zinc stearate suppliers, zinc stearate price industry, you just happen to contact us.

Preparation method of tungsten oxide

The European Commission has submitted to member states a new draft of sanctions against Russia, including an oil embargo. Some member states that rely heavily on Russian energy sought exemptions.  

Western media reported that the European Commission draft of the sixth round of sanctions against Russia includes within six to eight months gradually banning oil imports from Russia, but allowing Hungary and Slovakia to extend the transition period for several months; The Russian Savings bank and other large financial institutions on the sanctions list.  

The European Union has imported 44 billion euros of fossil fuels from Russia since Russia launched its special military operation against Ukraine in late February, according to Finland's Energy and Clean Air Research Center.  

The Institute for European and Global Economics in Brussels estimates that the European Union currently consumes about $450 million worth of Russian oil a day.  

Among EU members, landlocked Hungary and Slovakia, which import most of their oil from Russia, cannot quickly find alternative supplies.  Slovakia says the transition will take years.  Some officials believe Bulgaria and the Czech Republic may also seek to opt out of oil sanctions against Russia.

Affected by the ever-changing international situation, the supply and prices of international bulk tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price are still very uncertain.

Tungsten oxide overview

Tungsten trioxide is a powder metallurgy raw material for the production of cemented carbide and tungsten products. According to the national standard (GB/T 3457-1998), it is divided into two types, namely tungsten trioxide (referred to as yellow tungsten), molecular formula is WO3, and blue tungsten oxide (referred to as blue tungsten, is a mixed tungsten oxide), molecular formula W20O58. Yellow tungsten is light yellow crystalline powder, blue tungsten is dark blue or blue-black crystalline powder.

Preparation method of tungsten oxide

1. Ammonium tungstate method: The tungsten concentrate is hydrolyzed by sodium hydroxide, neutralized with hydrochloric acid, and then reacted with ammonium chloride to generate ammonium tungstate, which is then added with hydrochloric acid for acid hydrolysis to generate tungstic acid, which is then decomposed by roasting. , pulverized to obtain tungsten trioxide.

2. Hydrochloric acid decomposition method of tungstate. The saturated aqueous solution of sodium tungstate Na2WO4, calcium tungstate CaWO4 and other tungstate salts is heated, and the solution is slowly added dropwise into 2-3 times excess boiling concentrated hydrochloric acid by molar ratio. According to the above reaction, yellow tungstic acid is precipitated. At this time, if the dripping speed is too fast or the liquid temperature drops, suspension or colloidal precipitation is likely to be formed, which brings difficulties to the next treatment. After the dropwise addition, heating was continued on a water bath for 1 h, and the precipitate became easy to filter. After standing, it was washed several times with 5% ammonium nitrate aqueous solution to completely remove Cl-. After filtration, it is dried at 120 °C, and finally heated to 600 °C, the tungstic acid is completely dehydrated and becomes tungsten trioxide.

3. Thermal decomposition of ammonium paratungstate. Put ammonium paratungstate (NH4) 10W12O41·11H2O purified by recrystallization method into a porcelain crucible, and when heated to above about 400 ℃, ammonia volatilizes to obtain tungsten trioxide.

{xunruicms_img_title}

Application of tungsten oxide WO3 powder

Tungsten oxide has a variety of uses in daily life. It is commonly used in the manufacture of phosphors for industrial X-ray screens and tungstates for fire-resistant fabrics. Due to its rich yellow element, tungsten oxide is also used as a pigment in ceramics and paints. In addition, other application examples of tungsten trioxide are as follows:

Tungsten oxide is mainly used in the production of tungsten powder and tungsten carbide powder by calcination reduction, and is further used in the production of cemented carbide products, such as the manufacture of tools and molds.

Tungsten oxide can also be used to manufacture pure tungsten products, tungsten rods, tungsten wires, tungsten electrodes; and use counterweights and radiation shielding materials.

In industrial production, a small amount is also used as a colorant for yellow ceramics. In the shipbuilding industry, tungsten oxide is used as an important anti-corrosion paint and coating material.

Tungsten oxide has been used to produce electrochromic windows, smart windows. These windows are electrically switchable glass that varies in light transmittance and applied voltage. This allows users to tint their windows by changing the heat or light.

Tungsten oxide WO3 powder price

The price of tungsten trioxide powder will change randomly with the production cost of tungsten trioxide powder, transportation cost, international situation, exchange rate, market supply and demand and other factors. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, inexpensive nanomaterials and chemicals by providing turnkey custom manufacturing services. If you are looking for tungsten oxide WO3 powder, please feel free to send an inquiry to get the latest price of tungsten oxide WO3 powder.

Tungsten Oxide WO3 Powder Supplier

As a global tungsten oxide WO3 powder supplier, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics, structural devices, and can provide OEM services.

More information about Tungsten Oxide WO3 Powder

Tungsten Trioxide Properties (Theoretical)

Compound Formula

WO3

Molecular Weight

231.85

Appearance

Yellow Powder

Melting Point

1473 °C (2683 °F)

Boiling Point

1700 °C ( 3092 °F)

Density

7.16 g/cm3

Solubility in H2O

Insoluble

Crystal Phase / Structure

Monoclinic

Exact Mass

231.936 g/mol

Monoisotopic Mass

231.935644 Da

Charge

-6


Russia's Rokot-M carrier rocket is scheduled to launch for the first time in 2024. 

The first launch of the Rokot-M carrier rocket is planned for 2024 from the Plesetsk cosmodrome, the general manager of the Khrunichev National Space Research and Production Center told TASS. The Rokot-M, a lightweight carrier rocket powered by liquid fuel, began development in 2018, with The Russian side using domestic components instead of Ukrainian components.

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials including graphite powder, 3D printing powder, the tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Basic information of molybdenum disulfide

Russia's insistence on paying for Russian gas in rubles has rattled European countries: Greece held an emergency meeting of suppliers, the Dutch government would urge consumers to use less gas, and the French energy regulator told consumers not to panic. Russian gas meets one-third of Europe's annual energy needs.

Russia said they could expand their demand for ruble payments for other commodities, including oil, grain, fertilizer, coal, and metals, which raised the risk of recession in Europe and the US. 

Moscow is expected to unveil its ruble payment plan in early April, but it said it would not immediately ask buyers to pay for gas in rubles.  

Western countries have said paying in rubles would be a breach of contract, and renegotiation could take months or longer. This uncertainty has pushed commodity market prices higher.

The supply and prices of other commodities like the Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price could also be affected.

Overview of molybdenum disulfide

Molybdenum disulfide is an inorganic substance, the chemical formula MoS2, is the main component of molybdenite. Black solid powder with metallic luster, molybdenum disulfide is an inorganic substance, chemical formula MoS2, is the main component of molybdenum ore. Black solid powder with metallic luster and smooth feel.

Basic information of molybdenum disulfide

English name: Molybdenum

Disulfide CAS No.: 1317-33-5

Molybdenum Disulfide Molecular formula: MoS2

Molybdenum disulfide molar mass: 160.06

Molybdenum disulfide Appearance: black/lead gray solid

Molybdenum disulfide density (water) = 1): 4.8

Molybdenum disulfide melting point (℃): 1185

Solubility of molybdenum disulfide: decomposed in aqua regia, hot sulfuric acid and nitric acid, insoluble in dilute acid and water

Molybdenum Disulfide Hazardous Properties: The powder will burn at high temperatures and react violently with peroxides.

{xunruicms_img_title}

How is molybdenum disulfide MoS2 powder produced?

MoS2 occurs naturally in molybdenite (a crystalline mineral) or pyroxene (a rare low-temperature form of molybdenite). Molybdenite obtains relatively pure MoS2 by flotation. The main pollutant is carbon. MoS2 can also be produced by thermal treatment of almost all molybdenum compounds with hydrogen sulfide or elemental sulfur, and by metathesis of molybdenum pentachloride.

Application of molybdenum disulfide

Molybdenum disulfide is an important solid lubricant, especially suitable for high temperature and high pressure. It is also diamagnetic and can be used as linear photoconductors and semiconductors showing P-type or N-type conductivity, with rectification and energy conversion. Molybdenum disulfide can also be used as a catalyst for complex hydrocarbon dehydrogenation.

It is also known as the "King of Advanced Solid Lubricants". Molybdenum disulfide is a solid powder made of natural molybdenum concentrate after chemical purification and changing the molecular structure. This product is black, slightly silver-gray, with metallic luster, smooth to the touch, and insoluble in water. This product has the advantages of good dispersibility. Not sticky. It can be added to various greases to form a non-stick colloidal state, which can increase the lubricity and extreme pressure of the grease. It is also suitable for high temperature, high pressure, high speed and the main function of molybdenum disulfide used in friction materials is to reduce friction at low temperature, increase friction at high temperature, and small loss on ignition. Volatile in friction materials.

Friction reduction: The particle size of molybdenum disulfide processed by supersonic jet pulverization is 325-2500 mesh, the particle hardness is 1-1.5, and the friction coefficient is 0.05-0.1, which can reduce friction when used as friction material;

Increase friction: Molybdenum disulfide is non-conductive, and there are copolymers of molybdenum disulfide, molybdenum trisulfide and molybdenum trioxide. When the temperature of the friction material increases sharply due to friction, the molybdenum trioxide particles in the copolymer expand with the increase of temperature and increase the friction force;

Antioxidant: Molybdenum disulfide is obtained through chemical purification and comprehensive reaction. Its pH value is 7-8, and it is slightly alkaline. It covers the surface of the friction material, protects other materials, prevents them from being oxidized, especially makes other materials not easy to fall off and enhances adhesion.

Molybdenum disulfide price

The price of molybdenum disulfide varies randomly with factors such as production costs, transportation costs, international conditions, exchange rates, and supply and demand in the molybdenum disulfide market. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for molybdenum disulfide material, please feel free to contact for the latest price of molybdenum disulfide.

Molybdenum disulfide suppliers

As a global molybdenum disulfide supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (zinc sulfide, tungsten sulfide, bismuth sulfide, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Parameters of molybdenum disulfide MoS2 powder:
MoS2MoO3InsolublesFeSiO2H2OOilAcid Value
99%0.05%0.26%0.14%0.05%0.08%0.10%0.54


Europe has been facing the gas shortage problem since the second half of 2021. The worsening situation in Russia and Ukraine has reduced Russian gas shipments to Europe, leading to a doubling of European gas prices. Energy shortages have sent electricity prices soaring. For these reasons, it is predicted that the price of the Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price will continue to increase.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials, are leading the construction industry reform.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-saving and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made of fly ash, cement, slags and river sand.

It is characterized by its high strength and light weight. It also has heat insulation, noise insulation, thermal and easy construction.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, which allows it to reduce the weight and improve the performance of a building.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance of buildings and their comfort.

Construction of CLC blocks can be done quickly and easily, allowing for a shorter construction period.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has a superior thermal insulation and sound insulation, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the foamed material is formed through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load-bearing and service life.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the current trend in the construction industry, such as a simple production process, low costs, and good environmental performance.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote a greener construction industry.

Application Fields of Nickel Based Alloys

Nickel Based Alloys - Application Fields

Nickel based alloy Based on nickel, it is made up of several alloying materials. It is used for its high-temperature properties, corrosion resistance and oxidation resistant as well as mechanical properties in the aviation, aerospace and petrochemical industries. This article will give a detailed description of the Applications of nickel-based alloys in different fields such as aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is one important area for the application. Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets and satellites.

Aircraft engine components

Aircraft engines include:

* The aviation industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and guides.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

The structural components for satellites must be made of materials that have excellent corrosion resistance and high temperature resistance. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in the petrochemical and chemical industries. Nickel-based alloys are primarily used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes, for the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

* The core equipment of the petrochemical industries.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance, as well as mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are used primarily in the manufacture of high-temperature exchangers and in gas turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

In the manufacture of gas turbines such as blades or key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial Joint

Artificial joints can be:

* Medical devices which replace diseased joints.

* Requires materials with excellent corrosion resistance.

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are used widely in the manufacture of vasculars stents.

As a summary, nickel-based materials have been extensively used in the fields of aerospace, petrochemicals power energy and biomedicine. In the future, with the continued development of technology and the use of nickel-based materials, they will become more widely used, contributing to industrial and technological development.

About KMPASS

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in providing high-quality Nanomaterials and chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. You can contact us at sales2@nanotrun.com for Inonel 718 Powder.

What is Zinc Sulfide

Zinc Sulfide:

Its chemical formula is ZnS. The molecular weight of the compound is 134.72. It is created by interacting through ionic interactions with zinc ions, (Zn2+), and sulfur ions, (S2-). The sulfur ion forms a regular tetrahedron in which the zinc ion sits in the center. In contrast, the ion sulfur is found in the center a tetrahedron. This structure can also be described as a face centered cubic crystal system where zinc and sulfur are located in the vertex of the lattice and at the center of the face.

Zinc Sulfide (also known as Zinc Sulfide) is an insoluble, white solid. It is not soluble with water, but it is soluble with bases and acids. Zinc sulfide's density is 3,98 grams per cubic centimeter, with a melting and boiling temperature optimum of 1650 degrees C. The light transmission is between 200 and 400nm. Zinc sulfide has relatively stable properties, but under certain circumstances it can also undergo reactions. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc sulfide will react with hydroxide molecules to produce zinc hydroxide.

Application Of Zinc Sulfide

Zinc sulfide, also known as zinc sulfur, is a significant compound. The unique structure of its crystal and its chemical and physi-cal properties have made it a widely used material in many fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has many uses, including in the production of fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors which, upon being excited by external lights, emit different colors. When producing fluorescent lights, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. Zinc sulfide converts light energy into electrical power in solar cells. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. Zinc sulfide is used in the manufacture of anti-malarials, including zincsulfate as well as zinc acetate. The zinc sulfide used can be used for the production of preservatives and fungicides.


4. Catalyst Manufacturing

Zinc sulfide can act as a catalyst for the creation of other compounds like zinc acetate or acetone. Zinc sulfur is a highly active and selective catalyst in manufacturing.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

Method of Production of Zinc Sulfide

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc sulfide was obtained by mixing zinc salt with sulfur salts in a liquid solution.

Preparation Solution: Dissolve a suitable amount of zinc salt and sulfur salt into water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and a precipitating agent of appropriate amount is added to precipitate sulfur ions as well as zinc ions. This results in zinc sulfide.

Filtration : The reaction is filtered in order to obtain a filtrate that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitation of zinc sulfide is cleaned with alcohol in order to remove impurities.

Drying: After washing the zinc sulfide it is precipitated then dried to get zinc sulfide.

Chemical precipitation is easy to do, inexpensive, and produces a product of high purity. The disadvantages of this method are that it requires a large number of detergents and precipitating agents. Also, the waste liquid generated must be treated and disposed before being discharged, resulting in a degree pollution.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid-phase synthesis. A solid reaction between zinc oxides and sulfur-containing elements was used to produce zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment: Raw materials undergo a pretreatment at high temperature to ensure that all components react and generate zinc and vapor.

Synthesis: Zinc and sulfur are combined at high temperature to form zinc sulfide.

Collection: The powdered zinc sulfide is collected and processed accordingly.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high-temperatures and large quantities of carbon and sulfur powders, which can cause environmental pollution.


3. Soluthermal method

The solvothermal process is a method that has been developed to prepare zinc sulfide. The method is to dissolve zinc salts and sulfur salts in organic solvents under high pressure and temperature. This produces zinc sulfide by hydrothermal reactions.

Preparation Solution: Dissolve an appropriate amount of zinc salt and sulfur in organic solvent.

High temperature and pressure reaction: The solution above will be placed in a high temperature and pressure reactor. Under these conditions, the hydrothermal reactions will produce zinc sulfide.


The generated zinc powder is collected, and treated as required.

The solvothermal technique has the advantage of a high purity product, good crystallinity and a relatively straightforward process. It is also possible to use different organic solvants and reaction conditions in order to regulate product properties. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvents are expensive and require certain technology.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental protection and safety. Adopting appropriate environmental protection technologies and measures will help reduce the harm caused to the environment and humans.

Prospect Markets of Zinc Sulfide ()

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can absorb light while emitting different colors. It is used widely in the display, lighting, photovoltaic, and other fields. Luminous materials are being used in more and more fields, including solar cells and biomedicine. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Photoelectric materials convert light energy to electricity. Solar cells is the most common use. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in pharmaceutical production. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceutics, and chemical. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is also widely employed in the manufacture of optical devices. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities for zinc sulfide to be used in optical device production.

Price of Zinc Sulfide powder :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with more than 12-years of experience. They provide super-high-quality chemicals, such as silicon powders, nitride particles, graphite particles, zinc sulfide grains, boron grains, and 3D printing powders.

Contact us to send a request if you need high-quality zinc sulfur powder.

The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry

I. I.

As a result of the recent changes in the global energy market, the energy sector is growing rapidly. The future energy market will include solar energy, biomass, wind, water, and geothermal power. The energy sector of tomorrow will be dominated by molybdenum because it is rare. This article will examine the characteristics, principles, and application areas for molybdenum so that you can understand the importance of this element in the current energy industry.

2. Property of molybdenum

Molybdenum has high melting, boiling and strength properties, as well as corrosion resistance. Its chemical properties make it insoluble in acids, alkalis, and water. The molybdenum dioxide has excellent thermal and electrical stability. This makes it an important component of the new industry.


3. Molybdenum's role in the New Energy Industry

solar industry

The solar industry is defined as the sector that converts and uses solar energy. Molybdenum compounds and their derivatives play a major role in the Solar Industry.


(1) Photovoltaic Material: The molybdenum material is a good photovoltaic because it has high conversion efficiency. Molybdenum can be added to solar cells in small amounts to improve their photoelectric conversion and lifetime.


Molybdenum can be used in high-temperature equipment like solar collectors, solar boilers and other high-temperature devices to increase the thermal efficiency.

Wind Energy Industry


Wind energy is an industry that converts and uses wind power for energy conversion. Molybdenum compounds and molybdenum play important roles in wind energy.


(1) Wind turbines. Molybdenum, and its alloys, have excellent strength and corrosion resistance properties. They can be used in the manufacture of key components of wind turbines such as the blades and the main shafts to increase the safety and service life.


(2) Lubricants. Molybdenum compounds and their compounds are excellent lubricants and can reduce the friction loss of wind turbines and equipment failure rates.


Hydropower industry

The hydropower industry is an industry that uses water energy as a source of energy. Molybdenum compounds and molybdenum play important roles in hydropower.

Molybdenum can be used for key components like blades and main shafts in hydrogenerator systems to improve their service life and safety.


Fluid accessories. Molybdenum compounds and their alloys have excellent fluidity, corrosion resistance, and can be used in fluid accessories to improve fluid efficiency and durability for hydroelectric generator sets.


Geothermal Energy Industry

Geothermal energy is an industry that uses the geothermal heat to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in geothermal energy.

(1) Geothermal equipment: Molybdenum can be used in the manufacture of key components, such as heat-exchangers and boilers for geothermal equipment to improve thermal stability and efficiency.


Molybdenum can be used for the production of components like heat exchangers, pipes and other geothermal equipment. This will improve the thermal efficiency and durability.

Biomass Energy Industry

The biomass energy industry uses biomass energy to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in the bioenergy industry.


Molybdenum can be used for the production of boilers and burners in biomass combustion equipment. This will improve their thermal stability and efficiency.


Molybdenum is a good catalyst and can be used in the production of biofuels to increase yield and quality.


4. Molybdenum applications in the new energy sector

Solar power generation. Molybdenum has a major role to play in the solar cell and is an important material for solar energy generation systems.

Molybdenum has a significant role to play in wind power generation.

Molybdenum has a vital role to play in the hydroelectric generation of power. It is a critical material for hydropower systems.

Molybdenum has a major role to play in geothermal equipment. It is also a critical material for the systems that generate geothermal electricity.

Molybdenum has a vital role to play in the production of biofuels and in the combustion of biomass. It is also a crucial material for biomass energy systems.


5. Molybdenum in the new energy sector

Molybdenum demand will increase with the rapid development in the new energy industry. Gleichzeitig, due to the rapid development of technology and cost reduction, the use of molybdenum within the new energy industry is set to increase. Molybdenum's application in the new energy sector will expand further, contributing to the growth of green power.

Application of Nitinol Powder

Description of zinc stearate

Preparation method of tungsten oxide

Basic information of molybdenum disulfide

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Copper Powder Cu Powder CAS 7440-50-8, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

Preparation method of tungsten boride

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Product Properties of Chromium Oxide Cr2O3 Powder CAS 1308-38-9

High Purity Boron Carbide B4C Powder CAS 12069-32-8, 99%

Is Molybdenum Disilicide a Dangerous Good?

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity 3D Printing Inconel 625 Powder

Application of Nanometer Iron Oxide Fe3O4 Powder

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

Overview and wide application of molybdenum disulfide

Newstiohardiman is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newstiohardiman.